\(\int \frac {\cos ^{\frac {5}{2}}(c+d x) (A+C \sec ^2(c+d x))}{(a+a \sec (c+d x))^2} \, dx\) [1114]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 35, antiderivative size = 196 \[ \int \frac {\cos ^{\frac {5}{2}}(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^2} \, dx=\frac {4 (14 A+5 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 a^2 d}-\frac {5 (3 A+C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 a^2 d}-\frac {5 (3 A+C) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 a^2 d}+\frac {4 (14 A+5 C) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{15 a^2 d}-\frac {(3 A+C) \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{a^2 d (1+\cos (c+d x))}-\frac {(A+C) \cos ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2} \]

[Out]

4/5*(14*A+5*C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/a^2/d-5/3
*(3*A+C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/a^2/d+4/15*(14*
A+5*C)*cos(d*x+c)^(3/2)*sin(d*x+c)/a^2/d-(3*A+C)*cos(d*x+c)^(5/2)*sin(d*x+c)/a^2/d/(1+cos(d*x+c))-1/3*(A+C)*co
s(d*x+c)^(7/2)*sin(d*x+c)/d/(a+a*cos(d*x+c))^2-5/3*(3*A+C)*sin(d*x+c)*cos(d*x+c)^(1/2)/a^2/d

Rubi [A] (verified)

Time = 0.46 (sec) , antiderivative size = 196, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {4199, 3121, 3056, 2827, 2715, 2720, 2719} \[ \int \frac {\cos ^{\frac {5}{2}}(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^2} \, dx=-\frac {5 (3 A+C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 a^2 d}+\frac {4 (14 A+5 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 a^2 d}-\frac {(3 A+C) \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{a^2 d (\cos (c+d x)+1)}+\frac {4 (14 A+5 C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{15 a^2 d}-\frac {5 (3 A+C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 a^2 d}-\frac {(A+C) \sin (c+d x) \cos ^{\frac {7}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2} \]

[In]

Int[(Cos[c + d*x]^(5/2)*(A + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x])^2,x]

[Out]

(4*(14*A + 5*C)*EllipticE[(c + d*x)/2, 2])/(5*a^2*d) - (5*(3*A + C)*EllipticF[(c + d*x)/2, 2])/(3*a^2*d) - (5*
(3*A + C)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*a^2*d) + (4*(14*A + 5*C)*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(15*a^
2*d) - ((3*A + C)*Cos[c + d*x]^(5/2)*Sin[c + d*x])/(a^2*d*(1 + Cos[c + d*x])) - ((A + C)*Cos[c + d*x]^(7/2)*Si
n[c + d*x])/(3*d*(a + a*Cos[c + d*x])^2)

Rule 2715

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Sin[c + d*x])^(n - 1)/(d*n))
, x] + Dist[b^2*((n - 1)/n), Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integ
erQ[2*n]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3056

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x]
)^n/(a*f*(2*m + 1))), x] - Dist[1/(a*b*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n -
1)*Simp[A*(a*d*n - b*c*(m + 1)) - B*(a*c*m + b*d*n) - d*(a*B*(m - n) + A*b*(m + n + 1))*Sin[e + f*x], x], x],
x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ
[m, -2^(-1)] && GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])

Rule 3121

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[a*(A + C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x
])^(n + 1)/(f*(b*c - a*d)*(2*m + 1))), x] + Dist[1/(b*(b*c - a*d)*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)
*(c + d*Sin[e + f*x])^n*Simp[A*(a*c*(m + 1) - b*d*(2*m + n + 2)) - C*(a*c*m + b*d*(n + 1)) + (a*A*d*(m + n + 2
) + C*(b*c*(2*m + 1) - a*d*(m - n - 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, n}, x] &&
NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)]

Rule 4199

Int[(cos[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (C_.)*sec[(e_.)
 + (f_.)*(x_)]^2), x_Symbol] :> Dist[d^(m + 2), Int[(b + a*Cos[e + f*x])^m*(d*Cos[e + f*x])^(n - m - 2)*(C + A
*Cos[e + f*x]^2), x], x] /; FreeQ[{a, b, d, e, f, A, C, n}, x] &&  !IntegerQ[n] && IntegerQ[m]

Rubi steps \begin{align*} \text {integral}& = \int \frac {\cos ^{\frac {5}{2}}(c+d x) \left (C+A \cos ^2(c+d x)\right )}{(a+a \cos (c+d x))^2} \, dx \\ & = -\frac {(A+C) \cos ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2}+\frac {\int \frac {\cos ^{\frac {5}{2}}(c+d x) \left (-\frac {1}{2} a (7 A+C)+\frac {1}{2} a (11 A+5 C) \cos (c+d x)\right )}{a+a \cos (c+d x)} \, dx}{3 a^2} \\ & = -\frac {(3 A+C) \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{a^2 d (1+\cos (c+d x))}-\frac {(A+C) \cos ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2}+\frac {\int \cos ^{\frac {3}{2}}(c+d x) \left (-\frac {15}{2} a^2 (3 A+C)+2 a^2 (14 A+5 C) \cos (c+d x)\right ) \, dx}{3 a^4} \\ & = -\frac {(3 A+C) \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{a^2 d (1+\cos (c+d x))}-\frac {(A+C) \cos ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2}-\frac {(5 (3 A+C)) \int \cos ^{\frac {3}{2}}(c+d x) \, dx}{2 a^2}+\frac {(2 (14 A+5 C)) \int \cos ^{\frac {5}{2}}(c+d x) \, dx}{3 a^2} \\ & = -\frac {5 (3 A+C) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 a^2 d}+\frac {4 (14 A+5 C) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{15 a^2 d}-\frac {(3 A+C) \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{a^2 d (1+\cos (c+d x))}-\frac {(A+C) \cos ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2}-\frac {(5 (3 A+C)) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{6 a^2}+\frac {(2 (14 A+5 C)) \int \sqrt {\cos (c+d x)} \, dx}{5 a^2} \\ & = \frac {4 (14 A+5 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 a^2 d}-\frac {5 (3 A+C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 a^2 d}-\frac {5 (3 A+C) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 a^2 d}+\frac {4 (14 A+5 C) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{15 a^2 d}-\frac {(3 A+C) \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{a^2 d (1+\cos (c+d x))}-\frac {(A+C) \cos ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 9.21 (sec) , antiderivative size = 1162, normalized size of antiderivative = 5.93 \[ \int \frac {\cos ^{\frac {5}{2}}(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^2} \, dx=\frac {20 A \cos ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \csc \left (\frac {c}{2}\right ) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec \left (\frac {c}{2}\right ) \left (A+C \sec ^2(c+d x)\right ) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{d (A+2 C+A \cos (2 c+2 d x)) \sqrt {1+\cot ^2(c)} (a+a \sec (c+d x))^2}+\frac {20 C \cos ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \csc \left (\frac {c}{2}\right ) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec \left (\frac {c}{2}\right ) \left (A+C \sec ^2(c+d x)\right ) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{3 d (A+2 C+A \cos (2 c+2 d x)) \sqrt {1+\cot ^2(c)} (a+a \sec (c+d x))^2}+\frac {\cos ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \sqrt {\cos (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \left (-\frac {16 (10 A+5 C+18 A \cos (c)+5 C \cos (c)) \csc (c)}{5 d}-\frac {32 A \cos (d x) \sin (c)}{3 d}+\frac {8 A \cos (2 d x) \sin (2 c)}{5 d}+\frac {4 \sec \left (\frac {c}{2}\right ) \sec ^3\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (A \sin \left (\frac {d x}{2}\right )+C \sin \left (\frac {d x}{2}\right )\right )}{3 d}-\frac {16 \sec \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}+\frac {d x}{2}\right ) \left (2 A \sin \left (\frac {d x}{2}\right )+C \sin \left (\frac {d x}{2}\right )\right )}{d}-\frac {32 A \cos (c) \sin (d x)}{3 d}+\frac {8 A \cos (2 c) \sin (2 d x)}{5 d}+\frac {4 (A+C) \sec ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \tan \left (\frac {c}{2}\right )}{3 d}\right )}{(A+2 C+A \cos (2 c+2 d x)) (a+a \sec (c+d x))^2}-\frac {112 A \cos ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \csc \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}\right ) \left (A+C \sec ^2(c+d x)\right ) \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\arctan (\tan (c)))} \sqrt {1+\cos (d x+\arctan (\tan (c)))} \sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{5 d (A+2 C+A \cos (2 c+2 d x)) (a+a \sec (c+d x))^2}-\frac {8 C \cos ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \csc \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}\right ) \left (A+C \sec ^2(c+d x)\right ) \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\arctan (\tan (c)))} \sqrt {1+\cos (d x+\arctan (\tan (c)))} \sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{d (A+2 C+A \cos (2 c+2 d x)) (a+a \sec (c+d x))^2} \]

[In]

Integrate[(Cos[c + d*x]^(5/2)*(A + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x])^2,x]

[Out]

(20*A*Cos[c/2 + (d*x)/2]^4*Csc[c/2]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]
*(A + C*Sec[c + d*x]^2)*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2
]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(d*(A + 2*C + A*Cos[2*c + 2*d*x])*Sq
rt[1 + Cot[c]^2]*(a + a*Sec[c + d*x])^2) + (20*C*Cos[c/2 + (d*x)/2]^4*Csc[c/2]*HypergeometricPFQ[{1/4, 1/2}, {
5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*(A + C*Sec[c + d*x]^2)*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x
- ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[
c]]]])/(3*d*(A + 2*C + A*Cos[2*c + 2*d*x])*Sqrt[1 + Cot[c]^2]*(a + a*Sec[c + d*x])^2) + (Cos[c/2 + (d*x)/2]^4*
Sqrt[Cos[c + d*x]]*(A + C*Sec[c + d*x]^2)*((-16*(10*A + 5*C + 18*A*Cos[c] + 5*C*Cos[c])*Csc[c])/(5*d) - (32*A*
Cos[d*x]*Sin[c])/(3*d) + (8*A*Cos[2*d*x]*Sin[2*c])/(5*d) + (4*Sec[c/2]*Sec[c/2 + (d*x)/2]^3*(A*Sin[(d*x)/2] +
C*Sin[(d*x)/2]))/(3*d) - (16*Sec[c/2]*Sec[c/2 + (d*x)/2]*(2*A*Sin[(d*x)/2] + C*Sin[(d*x)/2]))/d - (32*A*Cos[c]
*Sin[d*x])/(3*d) + (8*A*Cos[2*c]*Sin[2*d*x])/(5*d) + (4*(A + C)*Sec[c/2 + (d*x)/2]^2*Tan[c/2])/(3*d)))/((A + 2
*C + A*Cos[2*c + 2*d*x])*(a + a*Sec[c + d*x])^2) - (112*A*Cos[c/2 + (d*x)/2]^4*Csc[c/2]*Sec[c/2]*(A + C*Sec[c
+ d*x]^2)*((HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[
c])/(Sqrt[1 - Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[1 + Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[
c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + Tan[c]^2]) - ((Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*Cos
[c]^2*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(Cos[c]^2 + Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]
]]*Sqrt[1 + Tan[c]^2]]))/(5*d*(A + 2*C + A*Cos[2*c + 2*d*x])*(a + a*Sec[c + d*x])^2) - (8*C*Cos[c/2 + (d*x)/2]
^4*Csc[c/2]*Sec[c/2]*(A + C*Sec[c + d*x]^2)*((HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]
^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[1 + Cos[d*x + ArcTan[Tan[c]]]]
*Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + Tan[c]^2]) - ((Sin[d*x + ArcTan[Tan[c]]]*T
an[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(Cos[c]^2 + Sin[c]^2))/S
qrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]))/(d*(A + 2*C + A*Cos[2*c + 2*d*x])*(a + a*Sec[c + d*
x])^2)

Maple [A] (verified)

Time = 6.05 (sec) , antiderivative size = 451, normalized size of antiderivative = 2.30

method result size
default \(-\frac {\sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (96 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{10}-352 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{8}+120 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}-150 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}-336 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-120 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}-50 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}-120 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+266 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+190 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-135 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-75 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} C +5 A +5 C \right )}{30 a^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(451\)

[In]

int(cos(d*x+c)^(5/2)*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^2,x,method=_RETURNVERBOSE)

[Out]

-1/30*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(96*A*cos(1/2*d*x+1/2*c)^10-352*A*cos(1/2*d*x+1/
2*c)^8+120*A*cos(1/2*d*x+1/2*c)^6-150*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*Ellipti
cF(cos(1/2*d*x+1/2*c),2^(1/2))*cos(1/2*d*x+1/2*c)^3-336*A*cos(1/2*d*x+1/2*c)^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-
2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-120*C*cos(1/2*d*x+1/2*c)^6-50*C*(sin(1/2
*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*cos(1/2*d*x+1/2*c
)^3-120*cos(1/2*d*x+1/2*c)^3*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticE(cos(1/
2*d*x+1/2*c),2^(1/2))+266*A*cos(1/2*d*x+1/2*c)^4+190*C*cos(1/2*d*x+1/2*c)^4-135*A*cos(1/2*d*x+1/2*c)^2-75*cos(
1/2*d*x+1/2*c)^2*C+5*A+5*C)/a^2/cos(1/2*d*x+1/2*c)^3/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(
1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.12 (sec) , antiderivative size = 378, normalized size of antiderivative = 1.93 \[ \int \frac {\cos ^{\frac {5}{2}}(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^2} \, dx=\frac {2 \, {\left (6 \, A \cos \left (d x + c\right )^{3} - 8 \, A \cos \left (d x + c\right )^{2} - 2 \, {\left (47 \, A + 15 \, C\right )} \cos \left (d x + c\right ) - 75 \, A - 25 \, C\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 25 \, {\left (\sqrt {2} {\left (-3 i \, A - i \, C\right )} \cos \left (d x + c\right )^{2} + 2 \, \sqrt {2} {\left (-3 i \, A - i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-3 i \, A - i \, C\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 25 \, {\left (\sqrt {2} {\left (3 i \, A + i \, C\right )} \cos \left (d x + c\right )^{2} + 2 \, \sqrt {2} {\left (3 i \, A + i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (3 i \, A + i \, C\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 12 \, {\left (\sqrt {2} {\left (-14 i \, A - 5 i \, C\right )} \cos \left (d x + c\right )^{2} + 2 \, \sqrt {2} {\left (-14 i \, A - 5 i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-14 i \, A - 5 i \, C\right )}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 12 \, {\left (\sqrt {2} {\left (14 i \, A + 5 i \, C\right )} \cos \left (d x + c\right )^{2} + 2 \, \sqrt {2} {\left (14 i \, A + 5 i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (14 i \, A + 5 i \, C\right )}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{30 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}} \]

[In]

integrate(cos(d*x+c)^(5/2)*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^2,x, algorithm="fricas")

[Out]

1/30*(2*(6*A*cos(d*x + c)^3 - 8*A*cos(d*x + c)^2 - 2*(47*A + 15*C)*cos(d*x + c) - 75*A - 25*C)*sqrt(cos(d*x +
c))*sin(d*x + c) - 25*(sqrt(2)*(-3*I*A - I*C)*cos(d*x + c)^2 + 2*sqrt(2)*(-3*I*A - I*C)*cos(d*x + c) + sqrt(2)
*(-3*I*A - I*C))*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) - 25*(sqrt(2)*(3*I*A + I*C)*cos(d*x
 + c)^2 + 2*sqrt(2)*(3*I*A + I*C)*cos(d*x + c) + sqrt(2)*(3*I*A + I*C))*weierstrassPInverse(-4, 0, cos(d*x + c
) - I*sin(d*x + c)) - 12*(sqrt(2)*(-14*I*A - 5*I*C)*cos(d*x + c)^2 + 2*sqrt(2)*(-14*I*A - 5*I*C)*cos(d*x + c)
+ sqrt(2)*(-14*I*A - 5*I*C))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)))
 - 12*(sqrt(2)*(14*I*A + 5*I*C)*cos(d*x + c)^2 + 2*sqrt(2)*(14*I*A + 5*I*C)*cos(d*x + c) + sqrt(2)*(14*I*A + 5
*I*C))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))))/(a^2*d*cos(d*x + c)^
2 + 2*a^2*d*cos(d*x + c) + a^2*d)

Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^{\frac {5}{2}}(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^2} \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)**(5/2)*(A+C*sec(d*x+c)**2)/(a+a*sec(d*x+c))**2,x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {\cos ^{\frac {5}{2}}(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^2} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + A\right )} \cos \left (d x + c\right )^{\frac {5}{2}}}{{\left (a \sec \left (d x + c\right ) + a\right )}^{2}} \,d x } \]

[In]

integrate(cos(d*x+c)^(5/2)*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^2,x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + A)*cos(d*x + c)^(5/2)/(a*sec(d*x + c) + a)^2, x)

Giac [F]

\[ \int \frac {\cos ^{\frac {5}{2}}(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^2} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + A\right )} \cos \left (d x + c\right )^{\frac {5}{2}}}{{\left (a \sec \left (d x + c\right ) + a\right )}^{2}} \,d x } \]

[In]

integrate(cos(d*x+c)^(5/2)*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^2,x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + A)*cos(d*x + c)^(5/2)/(a*sec(d*x + c) + a)^2, x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^{\frac {5}{2}}(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^2} \, dx=\int \frac {{\cos \left (c+d\,x\right )}^{5/2}\,\left (A+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )}{{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^2} \,d x \]

[In]

int((cos(c + d*x)^(5/2)*(A + C/cos(c + d*x)^2))/(a + a/cos(c + d*x))^2,x)

[Out]

int((cos(c + d*x)^(5/2)*(A + C/cos(c + d*x)^2))/(a + a/cos(c + d*x))^2, x)